Nonlinearly ghost-free higher curvature gravity
Abstract
We find unitary and local theories of higher curvature gravity in the vielbein formalism, known as Poincaré gauge theory, by utilizing the equivalence to ghost-free massive bigravity. We especially focus on three and four dimensions, but extensions into a higher-dimensional spacetime are straightforward. In three dimensions, quadratic gravity L =R +T2+R2, where R is the curvature and T is the torsion with indices omitted, is shown to be equivalent to zwei-dreibein gravity and free from the ghost at fully nonlinear orders. In a special limit, new massive gravity is recovered. When the model is applied to the AdS /CFT correspondence, unitarity both in the bulk theory and in the boundary theory implies that the torsion must not vanish. On the other hand, in four dimensions, the absence of a ghost at nonlinear order requires an infinite number of higher curvature terms, and these terms can be given by a schematic form R (1 +R /α m2)-1R , where m is the mass of the massive spin-2 mode originating from the higher curvature terms and α is an additional parameter that determines the amplitude of the torsion. We also provide another four-dimensional ghost-free higher curvature theory that contains a massive spin-0 mode as well as a massive spin-2 mode.
- Publication:
-
Physical Review D
- Pub Date:
- December 2020
- DOI:
- 10.1103/PhysRevD.102.124049
- arXiv:
- arXiv:2009.11739
- Bibcode:
- 2020PhRvD.102l4049A
- Keywords:
-
- High Energy Physics - Theory;
- General Relativity and Quantum Cosmology
- E-Print:
- 14 pages, no figure, published version