The role of collision speed, cloud density, and turbulence in the formation of young massive clusters via cloud-cloud collisions
Abstract
Young massive clusters (YMCs) are recently formed astronomical objects with unusually high star formation rates. We propose the collision of giant molecular clouds (GMCs) as a likely formation mechanism of YMCs, consistent with the YMC conveyor-belt formation mode concluded by other authors. We conducted smoothed particle hydrodynamical simulations of cloud-cloud collisions and explored the effect of the clouds' collision speed, initial cloud density, and the level of cloud turbulence on the global star formation rate and the properties of the clusters formed from the collision. We show that greater collision speed, greater initial cloud density and lower turbulence increase the overall star formation rate and produce clusters with greater cluster mass. In general, collisions with relative velocity ≳ 25 km-=s-1, initial cloud density ≳ 250 cm-3, and turbulence of ≈2.5 km-=s-1 can produce massive clusters with properties resembling the observed Milky Way YMCs.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2020
- DOI:
- 10.1093/mnras/staa2857
- arXiv:
- arXiv:2009.07857
- Bibcode:
- 2020MNRAS.499.1099L
- Keywords:
-
- stars: formation;
- ISM: clouds;
- galaxies: ISM;
- galaxies: star clusters: general;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 17 pages, 13 figures, 4 tables, accepted for publication in MNRAS