Inconsistencies of e-waste management in developing nations – Facts and plausible solutions
Abstract
Electronic and electrical equipment (EEE) became an integral part of daily life and had an immense influence on the economy. The skyrocketing demand, progressive technologies, and high dependency resulted in inconceivable utilization of EEE. However, these scientific expansions shortened the life span of EEE, thereby generating massive volumes of waste electronic and electrical equipment (WEEE). On a global perspective, Oceania generates a per capita of 17.3 kg/inh (inhabitants), followed by Europe 16.6 kg/inh, America 11.6 kg/inh, Asia 4.2 kg/inh and the least contribution by Africa 1.9 kg/inh. As known, EEE comprises complex metallic and non-metallic fractions causing severe discrepancies within the ecosystem, endangering the living species; if not dealt with properly. Thus, there is a pressing need of immediate addressal on the effective e-waste management strategies both from developed and developing countries. On the spin side, the separation of the precious fractions from the EEE on the end-of-life may be a twin dimensional strategy of economic addition, and plummeting the alarming level threats to ecology. However, these menaces are well tackled by the developed countries to some extent by the stringent law enactments, establishing proper recycling facilities, and trading to the underdeveloped and developing nations. But, the majority of the developing and under developed nations lacks the statutes, gaps in policy making, socio-economic-cultural barriers, technology, and the appropriate treatment facilities. In addition, the review identified ten major shortfalls (10L's) refraining the effective e-waste management, especially in the developing and under developed nations. Among which, integration of the formal and informal sectors, mandated network registry, stringent law enforcements, regulated transboundary movements, manufacturers responsibility, consumer awareness and improved eco designs, investing on effective recycling facilities, and improved disposal facilities holds the key. Further, replacing the traditional and conventional procedures with the futuristic and eco-friendly approaches such as chelation, inducing ionic liquids, integrated processes or hybrid technologies, micro factories, photo catalysis, and green adsorption will substantially harness the current barriers of the e-waste management. Finally, the present review will be a thorough glancing for the future research of e-waste management of meso-micro-macro scales.
- Publication:
-
Journal of Environmental Management
- Pub Date:
- May 2020
- DOI:
- Bibcode:
- 2020JEnvM.26110234G
- Keywords:
-
- Electric and electronic equipment;
- Transboundary;
- Recycling facilities;
- Network registry;
- Hybrid technologies;
- meso-Micro-macro scales