Local Primordial Non-Gaussianities and super-sample variance
Abstract
Fluctuations with wavelengths larger than the volume of a galaxy survey affect the measurement of the galaxy power spectrum within the survey itself. In the presence of local Primordial Non-Gaussianities (PNG), in addition to super-sample matter density and tidal fluctuations, the large-scale gravitational potential also induces a modulation of the observed power spectrum. In this work we investigate this modulation by computing for the first time the response of the redshift-space galaxy power spectrum to the presence of a long wavelength gravitational potential, fully accounting for the stochastic contributions. For biased tracers new response functions arise due to couplings between the small-scale fluctuations in the density, velocity and gravitational fields, the latter through scale dependent bias operators, and the large-scale gravitational potential. We study the impact of the super-sample modes on the measurement of the amplitude of the primordial bispectrum of the local-shape, fNLloc, accounting for modulations of both the signal and the covariance of the galaxy power spectrum by the long modes. Considering DESI-like survey specifications, we show that in most cases super-sample modes cause little or no degradation of the constraints, and could actually reduce the errorbars on fNLloc by (10-30)%, if external information on the bias parameters is available.
- Publication:
-
Journal of Cosmology and Astroparticle Physics
- Pub Date:
- October 2020
- DOI:
- 10.1088/1475-7516/2020/10/007
- arXiv:
- arXiv:2005.14677
- Bibcode:
- 2020JCAP...10..007C
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 15 pages, 4 figures