Evolutionarily missing and conserved tRNA genes in human and avian
Abstract
Viral infection heavily relies on host transfer RNA (tRNA) for viral RNA decoding. Counterintuitively, not all tRNA species based on anticodon are matched to all 64-triplet codons during evolution. Life solves this problem by cognate tRNA species via wobbling decoding. We found that 14 out of 64 tRNA genes in humans and the main avian species (chicken and duck) were parallelly missing, including 8 tRNA-A34NN and 6 tRNA-G34NN species. By analyzing the conservation of key motifs in tRNA genes, we found that box A and B served as intragenic tRNA promoters were evolutionally conserved among human, chicken, and duck. Thus, decoding viral RNA by similar wobbling strategies and tRNA transcripts may be parallelly used by human, chicken, and duck. We envisioned that many basic mechanisms regarding viral RNA decoding were possibly conserved in these hosts and may consequently promote cross-species infection. Transfer RNAs (tRNAs) are essentially required for gene decoding. Despite the universal nature of genetic codon, not all tRNA genes are common to all organisms. Here, we would like to discuss fundamental problems and possible effects arising from the evolutionarily missing and conserved tRNA genes in human, chicken, and duck (Alkatib et al., 2012; Ou et al., 2019; Rogalski et al., 2008). Among these three organisms, viruses especially the avian influenza virus can crossly infect (Pepin et al., 2010). For multi-host viruses, similar viral RNA decoding strategies may be parallelly used by different hosts. Because viral cross-species infection heavily relies on host tRNAs of different species for viral RNA decoding (Ou et al., 2020; van Weringh et al., 2011). We envisioned that many basic mechanisms regarding viral RNA decoding were possibly conserved in these three hosts and may consequently promote cross-species infection.
- Publication:
-
Infection, Genetics and Evolution
- Pub Date:
- November 2020
- DOI:
- Bibcode:
- 2020InfGE..8504460O