Integrating collapse theories to understand socio-ecological systems resilience
Abstract
The world is facing new environmental challenges that may trigger the collapse of some social-ecological systems (SES). More extreme weather events may be much more common in the decades to come due to climate change. Although we have an idea of what climatic events to expect in each region, we know less about how SES can cope with these challenges. We study The Peruvian Piura Basin, which has been exposed to harsh environmental events associated with the El Niño Southern Oscillation (ENSO) for centuries. The Piura basin was home to the ancient Moche civilization, which collapsed due to a combination of factors, but strong El Niño events likely played a significant role. To analyze the resilience of The Piura Basin to flood events, we used as guidance the Robustness Framework and different propositions from prominent collapse theories to carry out a longitudinal study based on both primary and collected secondary data. We found that the Piura basin is very fragile based on almost all of the predictions of collapse theories (especially with respect to selfish elites, centralized governance, systems interconnection, anticipation capacity and sensitive dependence on resources), but the biggest strength is its growing stock of social capital. In small steps, user associations have been collectively working towards solutions for water conservation and public-infrastructure maintenance. There is a long way to go, but with the right policies to encourage the strengthening of these associations, the Piura basin could become more resilient to future El Niño events. This study also provides methodological and theoretical insights that can contribute to theory building for the resilience of SES.
- Publication:
-
Environmental Research Letters
- Pub Date:
- July 2020
- DOI:
- Bibcode:
- 2020ERL....15g5008R
- Keywords:
-
- socio-ecological systems;
- societal collapse;
- robustness;
- resilience;
- environmental change;
- El Niño Southern Oscillation (ENSO)