NuRadioMC: simulating the radio emission of neutrinos from interaction to detector
Abstract
NuRadioMC is a Monte Carlo framework designed to simulate ultra-high energy neutrino detectors that rely on the radio detection method. This method exploits the radio emission generated in the electromagnetic component of a particle shower following a neutrino interaction. NuRadioMC simulates everything from the neutrino interaction in a medium, the subsequent Askaryan radio emission, the propagation of the radio signal to the detector and finally the detector response. NuRadioMC is designed as a modern, modular Python-based framework, combining flexibility in detector design with user-friendliness. It includes a state-of-the-art event generator, an improved modelling of the radio emission, a revisited approach to signal propagation and increased flexibility and precision in the detector simulation. This paper focuses on the implemented physics processes and their implications for detector design. A variety of models and parameterizations for the radio emission of neutrino-induced showers are compared and reviewed. Comprehensive examples are used to discuss the capabilities of the code and different aspects of instrumental design decisions.
- Publication:
-
European Physical Journal C
- Pub Date:
- February 2020
- DOI:
- 10.1140/epjc/s10052-020-7612-8
- arXiv:
- arXiv:1906.01670
- Bibcode:
- 2020EPJC...80...77G
- Keywords:
-
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- replaced with published version