Model comparison from LIGOVirgo data on GW170817's binary components and consequences for the merger remnant
Abstract
GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitationalwave data alone does not rule out the possibility that one or both objects were lowmass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to longlived or even stable remnants are possible. For longlived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of nonrotating neutron stars is at most [ image ], and three equations of state considered here can be ruled out. We obtain a tighter limit of [ image ] for the case that the merger results in a hypermassive neutron star.
 Publication:

Classical and Quantum Gravity
 Pub Date:
 February 2020
 DOI:
 10.1088/13616382/ab5f7c
 arXiv:
 arXiv:1908.01012
 Bibcode:
 2020CQGra..37d5006A
 Keywords:

 neutron stars;
 neutron star equation of state;
 gravitational wave astronomy;
 compact object mergers;
 General Relativity and Quantum Cosmology;
 Astrophysics  High Energy Astrophysical Phenomena
 EPrint:
 35 pages, 4 figures