Dynamics of Late-stage Reconnection in the 2017 September 10 Solar Flare
Abstract
In this multi-instrument paper, we search for evidence of sustained magnetic reconnection far beyond the impulsive phase of the X8.2-class solar flare on 2017 September 10. Using Hinode/EIS, CoMP, SDO/AIA, K-Cor, Hinode/XRT, RHESSI, and IRIS, we study the late-stage evolution of the flare dynamics and topology, comparing signatures of reconnection with those expected from the standard solar flare model. Examining previously unpublished EIS data, we present the evolution of nonthermal velocity and temperature within the famous plasma sheet structure, for the first four hours of the flare's duration. On even longer timescales, we use differential emission measures and polarization data to study the longevity of the flare's plasma sheet and cusp structure, discovering that the plasma sheet is still visible in observations of CoMP linear polarization on 2017 September 11, long after its last appearance in EUV. We deduce that magnetic reconnection of some form is still ongoing at this time—27 hr after flare onset.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- September 2020
- DOI:
- 10.3847/1538-4357/aba94b
- arXiv:
- arXiv:2007.13377
- Bibcode:
- 2020ApJ...900..192F
- Keywords:
-
- Solar flares;
- Solar flare spectra;
- Solar magnetic reconnection;
- Spectropolarimetry;
- Spectroscopy;
- 1496;
- 1982;
- 1504;
- 1973;
- 1558;
- Astrophysics - Solar and Stellar Astrophysics;
- Physics - Plasma Physics;
- Physics - Space Physics
- E-Print:
- 14 pages, 7 figures