An Extreme X-Ray Variability Event of a Weak-line Quasar
Abstract
We report the discovery of an extreme X-ray flux rise (by a factor of ≳20) of the weak-line quasar Sloan Digital Sky Survey (SDSS) J153913.47+395423.4 (hereafter SDSS J1539+3954) at z = 1.935. SDSS J1539+3954 is the most-luminous object among radio-quiet type 1 active galactic nuclei (AGNs) where such dramatic X-ray variability has been observed. Before the X-ray flux rise, SDSS J1539+3954 appeared X-ray weak compared with the expectation from its ultraviolet (UV) flux; after the rise, the ratio of its X-ray flux and UV flux is consistent with the majority of the AGN population. We also present a contemporaneous HET spectrum of SDSS J1539+3954, which demonstrates that its UV continuum level remains generally unchanged despite the dramatic increase in the X-ray flux, and its C IV emission line remains weak. The dramatic change only observed in the X-ray flux is consistent with a shielding model, where a thick inner accretion disk can block our line of sight to the central X-ray source. This thick inner accretion disk can also block the nuclear ionizing photons from reaching the high-ionization broad emission-line region, so that weak high-ionization emission lines are observed. Under this scenario, the extreme X-ray variability event may be caused by slight variations in the thickness of the disk. This event might also be explained by gravitational light-bending effects in a reflection model.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- February 2020
- DOI:
- 10.3847/2041-8213/ab6d78
- arXiv:
- arXiv:2001.08216
- Bibcode:
- 2020ApJ...889L..37N
- Keywords:
-
- X-ray active galactic nuclei;
- Active galaxies;
- Quasars;
- X-ray quasars;
- Radio quiet quasars;
- X-ray sources;
- 2035;
- 17;
- 1319;
- 1821;
- 1354;
- 1822;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 8 pages, 3 figures. Accepted for publication in ApJL