Panchromatic calibration of Ca II triplet luminosity dependence
Abstract
Context. The line strength of the near-infrared Ca II triplet (CaT) lines are a proxy for measuring metallicity from integrated and individual stellar spectra of bright red giant stars. In the latter case it is a mandatory step to remove the magnitude (proxy for gravity, temperature, and luminosity) dependence from the equivalent width (EW) of the lines before converting them into metallicities. For decades the working empirical procedure has been to use the relative magnitude with respect to the horizontal branch level or red clump, with the advantage that it is independent from distance and extinction.
Aims: The V filter is broadly adopted as the reference magnitude, although a few works have used different filters (I and Ks, for example). In this work we investigate the dependence of the CaT calibration using the griz filters from the Dark Energy Camera (DECam) and the Gemini Multi-Object Spectrograph (GMOS), the G filter from Gaia, the BVI filters from the Magellanic Clouds photometric survey (MCPS), and the YJKs filters from the Visible and Infrared Survey Telescope for Astronomy (VISTA) InfraRed CAMera (VIRCAM). We use as a reference the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) V filter used in the original analysis of the sample.
Methods: Red giant stars from clusters with known metallicity and available CaT EWs were used as reference. Public photometric catalogues were taken from the Survey of the MAgellanic Stellar History (SMASH) second data release, VISTA survey of the Magellanic Clouds system (VMC), Gaia, MCPS surveys, plus VIsible Soar photometry of star Clusters in tApi'i and Coxi HuguA (VISCACHA) GMOS data, for a selection of Small Magellanic Cloud clusters. The slopes were fitted using two and three lines to be applicable to most of the metallicity scales.
Results: The magnitude dependence of the CaT EWs is well described by a linear relation using any filter analysed in this work. The slope increases with wavelength of the filters. The zero point (i.e. reduced EW), which is the metallicity indicator, remains the same.
Conclusions: If the same line profile function is used with the same bandpasses and continuum regions, and the total EW comes from the same number of lines (2 or 3), then the reduced EW is the same regardless the filter used. Therefore, any filter can be used to convert the CaT equivalent widths into metallicity for a given CaT calibration.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- October 2020
- DOI:
- 10.1051/0004-6361/202039055
- arXiv:
- arXiv:2008.08056
- Bibcode:
- 2020A&A...642A.197D
- Keywords:
-
- stars: atmospheres;
- stars: abundances;
- methods: data analysis;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Instrumentation and Methods for Astrophysics
- E-Print:
- 12 pages, 22 figures, accepted for publication at Astronomy and Astrophysics