Direct detection of the cosmic expansion: the redshift drift and the flux drift
Abstract
The redshift drift, the change of cosmological redshift with time, is a direct consequence of the expansion of the Universe. Thus the measurement of the cosmological redshift drift will offer a direct test of our models of cosmology. The magnitude of the effect is very small, i.e. the spectral shift is of order of $10^{-10} - 10^{-9}$ over the period of a decade, but the next generation facilities such as ELT and SKA will be able to directly detect the expansion of our Universe by the year 2040. In this paper we focus on detectebility of this effect, including strategies of overcoming the kinematic contamination of the cosmological signal. We also show that the redshift drift directly impacts the change of flux. Thus apart from the redshift drift, measurements of the flux drift will provide an additional tool of detecting the expansion of the universe, including its acceleration. We discuss the strategies of detecting the flux drift and show that by including the flux drift signal to the redshift drift signal we boost the chances of a direct detection of the expansion of the Universe. We show that if only the stability of flux is at the level of $\Delta F/F \sim 10^{-6}$ then the SKA1-mid Array should be able to detect these effects, before the ETL and the full SKA. Thus, by including the flux drift into the SKA1-mid Array's analysis pipeline, we could be able to provide by mid-2030s a direct evidence of the expansion of the universe including its accelerating phase.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2019
- DOI:
- arXiv:
- arXiv:1907.04495
- Bibcode:
- 2019arXiv190704495B
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 14 pages, 7 figures