Weighted $\mathsf{P}-$partitions enumerator
Abstract
To an extended permutohedron we associate the weighted integer points enumerator, whose principal specialization is the $f$-polynomial. In the case of poset cones it refines Gessel's $\mathsf{P}$-partitions enumerator. We show that this enumerator is a quasisymmetric function obtained by universal morphism from the Hopf algebra of posets.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2019
- DOI:
- 10.48550/arXiv.1907.00099
- arXiv:
- arXiv:1907.00099
- Bibcode:
- 2019arXiv190700099P
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- 17 pages, 3 figures