Free Globularly Generated Double Categories II: The Canonical Double Projection
Abstract
This is the second installment of a two part series of papers studying free globularly generated double categories. We introduce the canonical double projection construction. The canonical double projection translates information from free globularly generated double categories to double categories defined through the same set of globular and vertical data. We use the canonical double projection to define compatible formal linear functorial extensions of the Haagerup standard form and the Connes fusion operation to possiblyinfinite index morphisms between factors. We use the canonical double projection to prove that the free globularly generated double category construction is left adjoint to decorated horizontalization. We thus interpret free globularly generated double categories as formal decorated analogs of double categories of quintets and as generators for internalizations.
 Publication:

arXiv eprints
 Pub Date:
 May 2019
 arXiv:
 arXiv:1905.02888
 Bibcode:
 2019arXiv190502888O
 Keywords:

 Mathematics  Category Theory
 EPrint:
 48 pages, slight improvements on new version. New comments on Section 3