Dynamical signatures of quantum chaos and relaxation time scales in a spin-boson system
Abstract
Quantum systems whose classical counterparts are chaotic typically have highly correlated eigenvalues and level statistics that coincide with those from ensembles of full random matrices. A dynamical manifestation of these correlations comes in the form of the so-called correlation hole, which is a dip below the saturation point of the survival probability's time evolution. In this work, we study the correlation hole in the spin-boson (Dicke) model, which presents a chaotic regime and can be realized in experiments with ultracold atoms and ion traps. We derive an analytical expression that describes the entire evolution of the survival probability and allows us to determine the time scales of its relaxation to equilibrium. This expression shows remarkable agreement with our numerical results. While the initial decay and the time to reach the minimum of the correlation hole depend on the initial state, the dynamics beyond the hole up to equilibration is universal. We find that the relaxation time of the survival probability for the Dicke model increases linearly with system size.
- Publication:
-
Physical Review E
- Pub Date:
- July 2019
- DOI:
- arXiv:
- arXiv:1905.03253
- Bibcode:
- 2019PhRvE.100a2218L
- Keywords:
-
- Condensed Matter - Statistical Mechanics;
- Quantum Physics
- E-Print:
- 12 pages, 3 figures