Evidence for a TDE origin of the radio transient Cygnus A-2
Abstract
In 2015, a radio transient named Cygnus A-2 was discovered in Cygnus A with the Very Large Array. Because of its radio brightness (νFν ≈ 6 × 1039 erg s-1), this transient likely represents a secondary black hole in orbit around the active galactic nucleus. Using Chandra ACIS observations from 2015 to 2017, we have looked for an X-ray counterpart to Cygnus A-2. The separation of 0.42 arcsec means that Cygnus A-2 cannot be spatially resolved, but by comparing the data with simulated MARX data, we put an upper limit to the 2-10 keV X-ray luminosity of Cygnus A-2 of 1 × 1043 erg s-1. Using the Fundamental Plane for accreting black holes, we find that our upper limit to the X-ray flux of Cygnus A-2 in 2015-2017 disfavours the interpretation of Cygnus A-2 as a steadily accreting black hole. We suggest instead that Cygnus A-2 is the radio afterglow of a tidal disruption event (TDE) and that a peak in the 2-10 keV luminosity of the nuclear region in 2013, when it was observed by Swift and NuSTAR, is X-ray emission from the TDE. A TDE could naturally explain the X-ray light curve of the nuclear region, as well as the appearance of a short-lived, fast, and ionized outflow previously detected in the 2013 NuSTAR spectrum. Both the radio and X-ray luminosities fall in between typical luminosities for `thermal' and `jetted' TDE types, suggesting that Cygnus A-2 would be unlike previously seen TDEs.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- July 2019
- DOI:
- 10.1093/mnras/stz1078
- arXiv:
- arXiv:1904.06125
- Bibcode:
- 2019MNRAS.486.3388D
- Keywords:
-
- galaxies: active;
- galaxies: individual: Cygnus A;
- X-rays: galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 14 pages, 7 figures, accepted for publication in MNRAS