A simple test for ideal memristors
Abstract
An ideal memristor is defined as a resistor with memory that, when subjected to a timedependent current, [ image ], its resistance R_{M}(q) depends only on the charge q that has flowed through it, so that its voltage response is [ image ]. It has been argued that a clear fingerprint of these ideal memristors is a pinched hysteresis loop in their I[ image ] curves. However, a pinched I[ image ] hysteresis loop is not a definitive test of whether a resistor with memory is truly an ideal memristor because such a property is shared also by other resistors whose memory depends on additional internal state variables, other than the charge. Here, we introduce a very simple and unambiguous test that can be utilized to check experimentally if a resistor with memory is indeed an ideal memristor. Our test is based on the duality property of a capacitormemristor circuit whereby, for any initial resistance states of the memristor and any form of the applied voltage, the final state of an ideal memristor must be identical to its initial state, if the capacitor charge finally returns to its initial value. In actual experiments, a sufficiently wide range of voltage amplitudes and initial states are enough to perform the test. The proposed test can help resolve some longstanding controversies still existing in the literature about whether an ideal memristor does actually exist or it is a purely mathematical concept.
 Publication:

Journal of Physics D Applied Physics
 Pub Date:
 January 2019
 DOI:
 10.1088/13616463/aae680
 arXiv:
 arXiv:1806.07360
 Bibcode:
 2019JPhD...52aLT01P
 Keywords:

 memristor;
 memory;
 ReRAM;
 resistance;
 Condensed Matter  Mesoscale and Nanoscale Physics;
 Physics  Applied Physics
 EPrint:
 J. Phys. D: Appl. Phys. 52, 01LT01 (2018)