Airborne lidar change detection: An overview of Earth sciences applications
Abstract
In the last two decades, airborne laser scanning (ALS) has found widespread application and driven fundamental advances in the Earth sciences. With increasing availability and accessibility, multi-temporal ALS data have been used to advance key research topics related to dynamic Earth surface processes. This review presents a comprehensive compilation of existing applications of ALS change detection to the Earth sciences. We cover a wide scope of material pertinent to the broad field of Earth sciences to encourage the cross-pollination between sub-disciplines and discuss the outlook of ALS change detection for advancing scientific discovery. While significant progress has been made in applying repeat ALS data to change detection, numerous approaches make fundamental assumptions that limit the full potential of repeat ALS data. The use of such data for 3D change detection is, therefore, in need of novel, scalable, and computationally efficient processing algorithms that transcend the ever-increasing data density and spatial coverage. Quantification of uncertainty in change detection results also requires further attention, as it is vitally important to understand what 3D differences detected between epochs represent actual change as opposed to limitations in data or methodology. Although ALS has become increasingly integral to change detection across the Earth sciences, the existence of pre- and post-event ALS data is still uncommon for many isolated hazard events, such as earthquakes, volcanic eruptions, wildfires, and landslides. Consequently, data availability is still a major limitation for many ALS change detection applications.
- Publication:
-
Earth Science Reviews
- Pub Date:
- November 2019
- DOI:
- Bibcode:
- 2019ESRv..19802929O
- Keywords:
-
- Multi-temporal;
- Airborne laser scanning;
- ALS;
- Repeat lidar;
- Change detection