Atmospheric Dynamics and the Variable Transit of KELT-9 b
Abstract
We present a spectrally and temporally resolved detection of the optical Mg I triplet at 7.8σ in the extended atmosphere of the ultra-hot Jupiter KELT-9 b, adding to the list of detected metal species in the hottest gas giant currently known. Constraints are placed on the density and radial extent of the excited hydrogen envelope using simultaneous observations of Hα and Hβ under the assumption of a spherically symmetric atmosphere. We find that planetary rotational broadening of {v}rot}={8.2}-0.7+0.6 km s-1 is necessary to reproduce the Balmer line transmission profile shapes, where the model including rotation is strongly preferred over the non-rotating model using a Bayesian information criterion comparison. The time series of both metal line and hydrogen absorption show remarkable structure, suggesting that the atmosphere observed during this transit is dynamic rather than static. We detect a relative emission feature near the end of the transit which exhibits a P-Cygni-like shape, evidence of material moving at ≈50-100 km s-1 away from the planet. We hypothesize that the in-transit variability and subsequent P-Cygni-like profiles are due to a flaring event that caused the atmosphere to expand, resulting in unbound material being accelerated to high speeds by stellar radiation pressure. Further spectroscopic transit observations will help establish the frequency of such events.
Based on data acquired with PEPSI using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Leibniz-Institute for Astrophysics Potsdam (AIP), and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and University of Virginia.- Publication:
-
The Astronomical Journal
- Pub Date:
- February 2019
- DOI:
- 10.3847/1538-3881/aaf725
- arXiv:
- arXiv:1810.05776
- Bibcode:
- 2019AJ....157...69C
- Keywords:
-
- planets and satellites: atmospheres;
- planets and satellites: composition;
- stars: flare;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- Accepted to AJ on 12/06/18. 24 pages, 12 main text figures, 6 appendix figures