Electron moments over Jupiter's main auroral emission
Abstract
Jupiter's ultraviolet (UV) aurora, the most powerful and intense in the solar system, is caused by energetic electrons precipitating from the magnetosphere into the atmosphere where they excite the molecular hydrogen. Electrons from ~50 eV to ~100 keV are characterized over the auroral regions by the Jovian Auroral Distributions Experiment (JADE) on Juno. Investigating the characteristics of electron distributions at these energies is critical for understanding the source population for the electrons that produce Jupiter's UV aurora and the mechanisms that accelerated them to keV and MeV energies. In this study, we present a survey of electron distributions and moments derived from JADE in Jupiter's polar magnetosphere. We quantify the electron properties (e.g. density and temperature) and explore similarities and differences in their distributions over several Juno perijove passes, focusing on regions near the main emission.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2019
- Bibcode:
- 2019AGUFMSM33G3299A
- Keywords:
-
- 2704 Auroral phenomena;
- MAGNETOSPHERIC PHYSICS;
- 2756 Planetary magnetospheres;
- MAGNETOSPHERIC PHYSICS;
- 5719 Interactions with particles and fields;
- PLANETARY SCIENCES: FLUID PLANETS;
- 6220 Jupiter;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS