Gaia's Exhalation from the 2019 Searles Valley Earthquake
Abstract
The earth's crust is a leaky geofluid system where surface trace gas emissions relate to open migration pathways and the presence of subsurface source(s). Seismic activity can open sealed migration pathways leading to trace gas emissions from the surface intersection of the active fault, which may not relate to observable surface fault rupture or offset. After the M7.1 Searles Valley earthquake, we collected mobile surface trace gas and meteorology data with AMOG (AutoMObile trace Gas) Surveyor, a mobile atmospheric chemistry and meteorology lab, in the Death Valley Park and Searles Valley within 24 hours of the quake, the following week, and after several weeks with air samples also collected for detailed later laboratory analysis.
We found widespread highly elevated CO2emissions along Panamint Valley including overall elevated SO2and H2S with strong enhancements around Manly Pass, where aftershocks occurred on the Manly Fault. This is in contrast to AMOG data collected in Death and Panamint Valleys in 2014, where concentrations were typical of California desert levels - near ambient and homogeneous. Significant sulfur trace gas emissions were discovered escaping from the rim of Ubehebe Volcano, last active in 1200 A.D, 115 km north of Manly Pass. Faults appear to play an important role in these geogas emissions, activated by the major earthquake and aftershocks. Further investigations are planned to characterize the system's return towards quiescence.- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2019
- Bibcode:
- 2019AGUFM.S31F0465L
- Keywords:
-
- 7299 General or miscellaneous;
- SEISMOLOGY