Updated orbital ephemeris of the ADC source X 1822-371: a stable orbital expansion over 40 years
Abstract
Aims: Source
Methods: We added two new values obtained from the Rossi-XTE (RXTE) and XMM-Newton observations performed in 2011 and 2017, respectively, to the X-ray eclipse arrival times from 1977 to 2008. We estimated the number of orbital cycles and the delays of our eclipse arrival times spanning 40 yr, using as reference time the eclipse arrival time obtained from the RXTE observation taken in 1996.
Results: Fitting the delays with a quadratic model, we found an orbital period Porb = 5.57062957(20) h and a Ṗorb value of 1.475(54)×10-10 s s-1. The addition of a cubic term to the model does not significantly improve the fit quality. We also determined a spin-period value of Pspin = 0.5915669(4) s and its first derivative Ṗspin = - 2.595(11) × 10-12 s s-1.
Conclusions: Our results confirm the scenario of a super-Eddington mass transfer rate; we also exclude a gravitational coupling between the orbit and the change in the oblateness of the companion star triggered by the nuclear luminosity of the companion star.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- May 2019
- DOI:
- 10.1051/0004-6361/201935665
- arXiv:
- arXiv:1905.03149
- Bibcode:
- 2019A&A...625L..12M
- Keywords:
-
- stars: neutron;
- stars: individual: X 1822-371;
- X-rays: binaries;
- eclipses;
- ephemerides;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 5 pages, 3 figures, accepted for publication in A&