J-PLUS: On the identification of new cluster members in the double galaxy cluster A2589 and A2593 using PDFs
Abstract
Aims: We aim to use multiband imaging from the Phase-3 Verification Data of the J-PLUS survey to derive accurate photometric redshifts (photo-z) and look for potential new members in the surroundings of the nearby galaxy clusters A2589 (z = 0.0414) & A2593 (z = 0.0440), using redshift probability distribution functions (PDFs). The ultimate goal is to demonstrate the usefulness of a 12-band filter system in the study of largescale structure in the local Universe.
Methods: We present an optimized pipeline for the estimation of photometric redshifts in clusters of galaxies. This pipeline includes a PSF-corrected photometry, specific photometric apertures capable of enhancing the integrated signal in the bluest filters, a careful recalibration of the photometric uncertainties and accurate upper-limit estimations for faint detections. To foresee the expected precision of our photo-z beyond the spectroscopic sample, we designed a set of simulations in which real cluster galaxies are modeled and reinjected inside the images at different signal-to-noise ratio (S/N) levels, recomputing their photometry and photo-z estimates.
Results: We tested our photo-z pipeline with a sample of 296 spectroscopically confirmed cluster members with an averaged magnitude of ⟨r⟩ = 16.6 and redshift ⟨z⟩ = 0.041. The combination of seven narrow and five broadband filters with a typical photometric-depth of r 21.5 provides δz/(1 + z) = 0.01 photo-z estimates. A precision of δz/(1 + z) = 0.005 is obtained for the 177 galaxies brighter than magnitude r < 17. Based on simulations, a δz/(1 + z) = 0.02 and δz/(1 + z) = 0.03 is expected at magnitudes ⟨r⟩ = 18 and ⟨r⟩ = 22, respectively. Complementarily, we used SDSS/DR12 data to derive photo-z estimates for the same galaxy sample. This exercise demonstrates that the wavelength-resolution of the J-PLUS data can double the precision achieved by SDSS data for galaxies with a high S/N. Based on the Bayesian membership analysis carried out in this work, we find as much as 170 new candidates across the entire field ( 5 deg2). The spatial distribution of these galaxies may suggest an overlap between the systems with no evidence of a clear filamentary structure connecting the clusters. This result is supported by X-ray Rosat All-Sky Survey observations suggesting that a hypothetical filament may have low density contrast on diffuse warm gas.
Conclusions: We prove that the addition of the seven narrow-band filters make the J-PLUS data deeper in terms of photo-z-depth than other surveys of a similar photometric-depth but using only five broadbands. These preliminary results show the potential of J-PLUS data to revisit membership of groups and clusters from nearby galaxies, important for the determination of luminosity and mass functions and environmental studies at the intermediate and low-mass regime.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- February 2019
- DOI:
- 10.1051/0004-6361/201731348
- arXiv:
- arXiv:1804.03640
- Bibcode:
- 2019A&A...622A.178M
- Keywords:
-
- large-scale structure of Universe;
- galaxies: distances and redshifts;
- galaxies: photometry;
- galaxies: clusters: general;
- surveys;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 16 pages, 9 figures &