Denoising weak lensing mass maps with deep learning
Abstract
Weak gravitational lensing is a powerful probe of the large-scale cosmic matter distribution. Wide-field galaxy surveys allow us to generate the so-called weak lensing maps, but actual observations suffer from noise due to imperfect measurement of galaxy shape distortions and to the limited number density of the source galaxies. In this paper, we explore a deep-learning approach to reduce the noise. We develop an image-to-image translation method with conditional adversarial networks (CANs), which learn efficient mapping from an input noisy weak lensing map to the underlying noise field. We train the CANs using 30000 image pairs obtained from 1000 ray-tracing simulations of weak gravitational lensing. We show that the trained CANs reproduce the true one-point probability distribution function (PDF) of the noiseless lensing map with a bias less than
- Publication:
-
Physical Review D
- Pub Date:
- August 2019
- DOI:
- 10.1103/PhysRevD.100.043527
- arXiv:
- arXiv:1812.05781
- Bibcode:
- 2019PhRvD.100d3527S
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Computer Science - Machine Learning
- E-Print:
- 15 pages, 12 figures, accepted for publication in Phys. Rev. D