Morpho-photometric redshifts
Abstract
Machine learning (ML) is one of two standard approaches (together with SED fitting) for estimating the redshifts of galaxies when only photometric information is available. ML photo-z solutions have traditionally ignored the morphological information available in galaxy images or partly included it in the form of hand-crafted features, with mixed results. We train a morphology-aware photometric redshift machine using modern deep learning tools. It uses a custom architecture that jointly trains on galaxy fluxes, colours, and images. Galaxy-integrated quantities are fed to a Multi-Layer Perceptron (MLP) branch, while images are fed to a convolutional (convnet) branch that can learn relevant morphological features. This split MLP-convnet architecture, which aims to disentangle strong photometric features from comparatively weak morphological ones, proves important for strong performance: a regular convnet-only architecture, while exposed to all available photometric information in images, delivers comparatively poor performance. We present a cross-validated MLP-convnet model trained on 130 000 SDSS-DR12 (Sloan Digital Sky Survey - Data Release 12) galaxies that outperforms a hyperoptimized Gradient Boosting solution (hyperopt+XGBoost), as well as the equivalent MLP-only architecture, on the redshift bias metric. The fourfold cross-validated MLP-convnet model achieves a bias δz/(1 + z) = -0.70 ± 1 × 10-3, approaching the performance of a reference ANNZ2 ensemble of 100 distinct models trained on a comparable data set. The relative performance of the morphology-aware and morphology-blind models indicates that galaxy morphology does improve ML-based photometric redshift estimation.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2019
- DOI:
- 10.1093/mnras/stz2477
- arXiv:
- arXiv:1811.06374
- Bibcode:
- 2019MNRAS.489.4802M
- Keywords:
-
- methods: statistical;
- galaxies: distances and redshifts;
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- MNRAS accepted