Ramanujan expansions of arithmetic functions of several variables over $\mathbb{F}_{q}[T]$
Abstract
Let $\mathbb{A}=\mathbb{F}_{q}[T]$ be the polynomial ring over finite field $\mathbb{F}_{q}$, and $\mathbb{A}_{+}$ be the set of monic polynomials in $\mathbb{A}$. In this paper, we show that a large class of arithmetic functions in multi-variables over $\mathbb{A}_{+}$ can be expanded through the polynomial Ramanujan sums and the unitary polynomial Ramanujan sums. These are analogues of classical results over $\mathbb{N}$ by Winter, Delange and Tóth.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2018
- DOI:
- 10.48550/arXiv.1811.01654
- arXiv:
- arXiv:1811.01654
- Bibcode:
- 2018arXiv181101654Q
- Keywords:
-
- Mathematics - Number Theory;
- 11T55;
- 11T24 (Primary);
- 11L05 (Secondary)
- E-Print:
- 27 pages