Distribution of complex algebraic numbers on the unit circle
Abstract
For $-\pi\leq\beta_1<\beta_2\leq\pi$ denote by $\Phi_{\beta_1,\beta_2}(Q)$ the number of algebraic numbers on the unit circle with arguments in $[\beta_1,\beta_2]$ of degree $2m$ and with elliptic height at most $Q$. We show that \[ \Phi_{\beta_1,\beta_2}(Q)=Q^{m+1}\int\limits_{\beta_1}^{\beta_2}{p(t)}\,{\rm d}t+O\left(Q^m\,\log Q\right),\quad Q\to\infty, \] where $p(t)$ coincides up to a constant factor with the density of the roots of some random trigonometric polynomial. This density is calculated explicitly using the Edelman--Kostlan formula.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2018
- DOI:
- 10.48550/arXiv.1811.00996
- arXiv:
- arXiv:1811.00996
- Bibcode:
- 2018arXiv181100996G
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Probability;
- Primary;
- 11N45;
- secondary;
- 11C08;
- 30C15
- E-Print:
- Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 474, pp. 90 - 107 (2018)