Expander Graphs are Non-Malleable Codes
Abstract
Any $d$-regular graph on $n$ vertices with spectral expansion $\lambda$ satisfying $n = \Omega(d^3\log(d)/\lambda)$ yields a $O\left(\frac{\lambda^{3/2}}{d}\right)$-non-malleable code for single-bit messages in the split-state model.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2018
- DOI:
- 10.48550/arXiv.1810.00106
- arXiv:
- arXiv:1810.00106
- Bibcode:
- 2018arXiv181000106R
- Keywords:
-
- Computer Science - Cryptography and Security;
- Computer Science - Discrete Mathematics
- E-Print:
- 10 pages Resubmitted with revised introduction and acknowledgement