Sparse Matrix Code Dependence Analysis Simplification at Compile Time
Abstract
Analyzing arraybased computations to determine data dependences is useful for many applications including automatic parallelization, race detection, computation and communication overlap, verification, and shape analysis. For sparse matrix codes, array data dependence analysis is made more difficult by the use of index arrays that make it possible to store only the nonzero entries of the matrix (e.g., in A[B[i]], B is an index array). Here, dependence analysis is often stymied by such indirect array accesses due to the values of the index array not being available at compile time. Consequently, many dependences cannot be proven unsatisfiable or determined until runtime. Nonetheless, index arrays in sparse matrix codes often have properties such as monotonicity of index array elements that can be exploited to reduce the amount of runtime analysis needed. In this paper, we contribute a formulation of array data dependence analysis that includes encoding index array properties as universally quantified constraints. This makes it possible to leverage existing SMT solvers to determine whether such dependences are unsatisfiable and significantly reduces the number of dependences that require runtime analysis in a set of eight sparse matrix kernels. Another contribution is an algorithm for simplifying the remaining satisfiable data dependences by discovering equalities and/or subset relationships. These simplifications are essential to make a runtimeinspectionbased approach feasible.
 Publication:

arXiv eprints
 Pub Date:
 July 2018
 arXiv:
 arXiv:1807.10852
 Bibcode:
 2018arXiv180710852S
 Keywords:

 Computer Science  Programming Languages