Infinite transitivity for Calogero-Moser spaces
Abstract
We prove the conjecture of Berest-Eshmatov-Eshmatov by showing that the group of automorphisms of a product of Calogero-Moser spaces $C_{n_i}$, where the $n_i$ are pairwise distinct, acts $m$-transitively for each $m$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2018
- DOI:
- 10.48550/arXiv.1807.05723
- arXiv:
- arXiv:1807.05723
- Bibcode:
- 2018arXiv180705723K
- Keywords:
-
- Mathematics - Algebraic Geometry
- E-Print:
- 6 pages