Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers
Abstract
We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.
- Publication:
-
Physical Review Letters
- Pub Date:
- April 2018
- DOI:
- arXiv:
- arXiv:1712.04937
- Bibcode:
- 2018PhRvL.120o1101R
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- General Relativity and Quantum Cosmology
- E-Print:
- 9 pages, 3 figures, 2 appendices. To appear in Physical Review Letters