Constraints from microlensing experiments on clustered primordial black holes
Abstract
It has recently been proposed that massive primordial black holes (PBH) could constitute all of the dark matter, providing a novel scenario of structure formation, with early reionization and a rapid growth of the massive black holes at the center of galaxies and dark matter halos. The scenario arises from broad peaks in the primordial power spectrum that give both a spatially clustered and an extended mass distribution of PBH. The constraints from the observed microlensing events on the extended mass function have already been addressed. Here we study the impact of spatial clustering on the microlensing constraints. We find that the bounds can be relaxed significantly for relatively broad mass distributions if the number of primordial black holes within each cluster is typically above one hundred. On the other hand, even if they arise from individual black holes within the cluster, the bounds from CMB anisotropies are less stringent due to the enhanced black hole velocity in such dense clusters. This way, the window between a few and ten solar masses has opened up for PBH to comprise the totality of the dark matter.
- Publication:
-
Physics of the Dark Universe
- Pub Date:
- March 2018
- DOI:
- 10.1016/j.dark.2018.01.001
- arXiv:
- arXiv:1710.04694
- Bibcode:
- 2018PDU....19..144G
- Keywords:
-
- Primordial black holes;
- Dark matter;
- Microlensing;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Theory
- E-Print:
- 6 pages, 3 figures, comments welcome