Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide
Abstract
Future scalable photonic quantum information processing relies on the ability of integrating multiple interacting quantum emitters into a single chip. Quantum dots provide ideal on-chip quantum light sources. However, achieving quantum interaction between multiple quantum dots on-a-chip is a challenging task due to the randomness in their frequency and position, requiring local tuning technique and long-range quantum interaction. Here, we demonstrate quantum interactions between distant two quantum dots on a nanophotonic waveguide. We achieve a photon-mediated long-range interaction by integrating the quantum dots to the same optical mode of a nanophotonic waveguide and overcome spectral mismatch by incorporating on-chip thermal tuners. We observe their quantum interactions of the form of super-radiant emission, where the two dots collectively emit faster than each dot individually. Creating super-radiant emission from integrated quantum emitters could enable compact chip-integrated photonic structures that exhibit long-range quantum interactions. Therefore, these results represent a major step towards establishing photonic quantum information processors composed of multiple interacting quantum emitters on a semiconductor chip.
- Publication:
-
Nano Letters
- Pub Date:
- August 2018
- DOI:
- 10.1021/acs.nanolett.8b01133
- arXiv:
- arXiv:1804.03631
- Bibcode:
- 2018NanoL..18.4734K
- Keywords:
-
- Quantum Physics;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Physics - Optics
- E-Print:
- 23 pages, 7 figures,