Europan double ridge morphometry as a test of formation models
Abstract
Double ridges on the Jovian satellite Europa consist of two parallel ridges with a central trough. Although these features are nearly ubiquitous on Europa, their formation mechanism(s) is (are) not yet well-understood. Previous hypotheses for their formation can be divided into two groups based on 1) the expected interior slope angles and 2) the magnitude of interior/exterior slope symmetry. The published hypotheses in the first ("fracture") group entail brittle deformation of the crust, either by diapirism, shear heating, or buckling due to compression. Because these mechanisms imply uplift of near-vertical fractures, their predicted interior slopes are steeper than the angle of repose (AOR) with shallower exterior slopes. The second ("flow") group includes cryosedimentary and cryovolcanic processes - explosive or effusive cryovolcanism and tidal squeezing -, which are predicted to form ridge slopes at or below the AOR. Explosive cryovolcanism would form self-symmetric ridges, whereas effusive cryolavas and cryo-sediments deposited during tidal squeezing would likely not exhibit slope symmetry. To distinguish between these two groups of hypothesized formation mechanisms, we derived measurements of interior slope angle and interior/exterior slope symmetry at multiple locations on Europa through analysis of data from the Galileo Solid State Imaging (SSI) camera. Two types of data were used: i) elevation data from five stereo-pair digital elevation models (DEMs) covering four ridges (580 individual measurements), and ii) ridge shadow length measurements taken on individual images over 40 ridges (200 individual measurements). Our results shows that slopes measured on our DEMs, located in the Cilix and Banded Plains regions, typically fall below the AOR, and slope symmetry is dominant. Two different shadow measurement techniques implemented to calculate interior slopes yielded slope angles that also fall below the AOR. The shallow interior slopes derived from both techniques weigh against brittle deformation mechanisms. Although shallow slopes could result from degradation, interior/exterior ridge symmetry weighs against ridge degradation as the sole reason for shallow interior slopes. Thus, our results suggest that, for the double ridges analyzed in this work, cryovolcanic or cryosedimentary formation is more likely than brittle deformation, and of those formation mechanisms, explosive cryovolcanism is the double ridge formation mechanism best supported on the basis of interior-exterior slope symmetry.
- Publication:
-
Icarus
- Pub Date:
- May 2018
- DOI:
- 10.1016/j.icarus.2017.12.009
- Bibcode:
- 2018Icar..305..225D