Brinicles and the Fates of Trapped Salts in the Ices of Ocean Worlds
Abstract
Brinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, formed by the downward migration of supercooled brine rejected from ice sheets, and found beneath sea ice in the polar regions of Earth. They provide a plausible setting for geochemical gradients amenable to life at the ice-ocean interface, in some ways analogous to hydrothermal vents at the seafloor-ocean interface. Their occurrence in icy ocean worlds like Europa and Enceladus remains hypothetical. The context of brinicles on Earth includes influences from oceanic flow, which will differ in other worlds, and surficial inputs from the atmosphere that do not exist in oceans with kilometers-thick global coverings of ice formed from the underlying ocean. Thus, it is difficult to project the likely occurrence and role of brinicles based on field observations of their earthly analogues. We discuss brinicles as they are currently understood, including their electrochemical properties in connection with potential habitats at the ice-ocean interface on Europa and Enceladus. We employ a fluid mechanical model (Cardoso and Cartwright, 2017) to assess the properties of brinicles on other worlds and consider their longevity relative to potential brine outflows from the overlying ice. We demonstrate how brinicles may grow by thermal diffusion, and provide simple scalings for their growth and outflow rates.
A part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2018. All rights reserved.- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2018
- Bibcode:
- 2018AGUFM.P21E3388V
- Keywords:
-
- 0726 Ice sheets;
- CRYOSPHEREDE: 4599 General or miscellaneous;
- OCEANOGRAPHY: PHYSICALDE: 6207 Comparative planetology;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTSDE: 6299 General or miscellaneous;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS