Using Blue Stragglers to Predict Retained Black Hole Population in Globular Clusters
Abstract
Large numbers of black holes (BHs) are expected to form in massive star clusters typical of the globular clusters (GCs). Sophisticated theoretical models suggest that many of these BHs can be retained in present-day GCs. Observations have also identified several BH candidates in Galactic and extragalactic GCs (e.g., Macarone et al. 2007; Irwin et al. 2010; Strader et al. 2012; Chomiuk et al. 2013; Miller-Jones et al. 2014). It has also been shown that high-mass and high-density clusters such as GCs are efficient factories of merging binary BHs similar to those observed by the LIGO observatories (Abbott et al. 2016a,b,c,d,e; Rodriguez et al. 2016). Understanding the formation rate and properties of binary BHs are dependent on a detailed understanding of how the BHs dynamically evolve within GCs. Nevertheless, directly detecting BHs in GCs is extremely challenging; BHs only in binaries with limited configurations can be directly detected by the detection of gravitational wave, X-ray, or radio emissions. We propose an indirect of inferring the number of undetected retained BHs in a GC by investigating the dynamical effects of a large number of BHs on the production of other tracer populations such as Blue Straggler Stars (BSS). Using a large grid of detailed GC models we show that there is a clear anti-correlation between the number of BSS in a cluster and the number of retained BHs. Being the most massive species, large numbers of retained BHs will dominate the core of the cluster as a result of mass-segregation driving away other low-mass species such as main-sequence stars from central high-density regions. BSS are expected to form from physical collisions between main-sequence (MS) stars mediated by binary encounters (e.g., Chatterjee et al. 2013) in cores of GCs. Production of BSS by collisions or mass transfer channels are suppressed if a large number of retained BHs in a cluster restrict the number of MS stars in the core. Extensive observational data exist on the number and radial distribution of BSS in GCs. Thus, this anti-correlation between the number of retained BHs and the number of BSS, once carefully calibrated by theoretical models, can be used to infer the population of undetected BHs in GCs.
- Publication:
-
American Astronomical Society Meeting Abstracts #231
- Pub Date:
- January 2018
- Bibcode:
- 2018AAS...23134415H