Buried Black Hole Growth in Advanced Mergers: The Discovery of a Large Population of Dual AGN Candidates by Chandra
Abstract
Interactions between galaxies are predicted to cause gas inflows that can potentially trigger nuclear activity. Since the inflowing material can obscure the central regions of interacting galaxies, a potential limitation of previous optical studies is that obscured active galactic nuclei (AGNs) can be missed at various stages along the merger sequence. In a recent large mid-infrared study of AGNs in mergers, we demonstrated that the fraction of obscured AGNs increases with merger stage, with the most energetically dominant optically obscured AGNs becoming more prevalent in the most advanced mergers, consistent with theoretical predictions. In a recent Chandra program, we discovered 8 out of 15 infrared-selected advanced mergers that display two nuclear X-ray sources with separations of a few kiloparsecs consistent with highly absorbed dual AGNs, demonstrating that WISE pre-selection may be effective in identifying a new population of optically invisible dual AGNs. These observations reveal that infrared and X-ray observations are critical in uncovering the most efficient environments for supermassive black hole accretion and a key stage in galaxy evolution. In this talk, I will discuss Chandra, NuSTAR, and near-infrared spectroscopic observations of these dual AGN candidates and recent hydrodynamic simulations that predict that this key stage in galaxy evolution is expected to be highly obscured.
- Publication:
-
American Astronomical Society Meeting Abstracts #231
- Pub Date:
- January 2018
- Bibcode:
- 2018AAS...23112305S