Desingularization of Clifford Torus and Nonradial Solutions to Yamabe Problem with Maximal Rank
Abstract
Through desingularization of Clifford torus, we prove the existence of a sequence of nondegenerate (in the sense of Duyckaerts-Kenig-Merle nodal nonradial solutions to the critical Yamabe problem $$-\Delta u=\frac{n(n-2)}{4}|u|^{\frac{4}{n-2}}u,\qquad u\in {\mathcal{D}}^{1,2}(\mathcal{R}^n). $$ The case $n=4$ is the first example in the literature of a solution with {\em maximal rank} ${\mathcal N}=2n+1+\frac{n(n-1)}{2}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2017
- DOI:
- 10.48550/arXiv.1712.00326
- arXiv:
- arXiv:1712.00326
- Bibcode:
- 2017arXiv171200326M
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 55 pages