Quantum algorithms to simulate manybody physics of correlated fermions
Abstract
Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An alternative approach, as proposed by Feynman, is to use a quantum computer. Here, we discuss quantum simulation of strongly correlated fermionic systems. We focus specifically on 2D and linear geometry with nearest neighbor qubitqubit couplings, typical for superconducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary fermionic Gaussian state with $O(N^2)$ gates and $O(N)$ circuit depth. Both algorithms are optimal in the sense that the numbers of parameters in the quantum circuits are equal to those to describe the quantum states. Furthermore, we propose an algorithm to implement the 2dimensional (2D) fermionic Fourier transformation on a 2D qubit array with only $O(N^{1.5})$ gates and $O(\sqrt N)$ circuit depth, which is the minimum depth required for quantum information to travel across the qubit array. We also present methods to simulate each time step in the evolution of the 2D FermiHubbard modelagain on a 2D qubit arraywith $O(N)$ gates and $O(\sqrt N)$ circuit depth. Finally, we discuss how these algorithms can be used to determine the ground state properties and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.
 Publication:

arXiv eprints
 Pub Date:
 November 2017
 arXiv:
 arXiv:1711.05395
 Bibcode:
 2017arXiv171105395J
 Keywords:

 Quantum Physics
 EPrint:
 23 pages, 28 figures