Twisted logarithmic modules of lattice vertex algebras
Abstract
Twisted modules over vertex algebras formalize the relations among twisted vertex operators and have applications to conformal field theory and representation theory. A recent generalization, called twisted logarithmic module, involves the logarithm of the formal variable and is related to logarithmic conformal field theory. We investigate twisted logarithmic modules of lattice vertex algebras, reducing their classification to the classification of modules over a certain group. This group is a semidirect product of a discrete Heisenberg group and a central extension of the additive group of the lattice.
 Publication:

arXiv eprints
 Pub Date:
 August 2017
 DOI:
 10.48550/arXiv.1708.08172
 arXiv:
 arXiv:1708.08172
 Bibcode:
 2017arXiv170808172B
 Keywords:

 Mathematics  Quantum Algebra;
 Mathematical Physics;
 17B69;
 81R10;
 33B15
 EPrint:
 41 pages