Gabor orthogonal bases and convexity
Abstract
Let $g(x)=\chi_B(x)$ be the indicator function of a bounded convex set in $\Bbb R^d$, $d\geq 2$, with a smooth boundary and everywhere non-vanishing Gaussian curvature. Using a combinatorial appraoch we prove that if $d \neq 1 \mod 4$, then there does not exist $S \subset {\Bbb R}^{2d}$ such that ${ \{g(x-a)e^{2 \pi i x \cdot b} \}}_{(a,b) \in S}$ is an orthonormal basis for $L^2({\Bbb R}^d)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2017
- DOI:
- 10.48550/arXiv.1708.06397
- arXiv:
- arXiv:1708.06397
- Bibcode:
- 2017arXiv170806397I
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 42B10