Weyl formula for the negative dissipative eigenvalues of Maxwell's equations
Abstract
Let $V(t) = e^{tG_b},\: t \geq 0,$ be the semigroup generated by Maxwell's equations in an exterior domain $\Omega \subset {\mathbb R}^3$ with dissipative boundary condition $E_{tan}- \gamma(x) (\nu \wedge B_{tan}) = 0, \gamma(x) > 0, \forall x \in \Gamma = \partial \Omega.$ We study the case when $\Omega = \{x \in {\mathbb R^3}:\: |x| > 1\}$ and $\gamma \neq 1$ is a constant. We establish a Weyl formula for the counting function of the negative real eigenvalues of $G_b.$
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2017
- DOI:
- 10.48550/arXiv.1705.09583
- arXiv:
- arXiv:1705.09583
- Bibcode:
- 2017arXiv170509583C
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematical Physics;
- Primary 35P20;
- Secondary 35Q61