Anisotropic Variable Hardy-Lorentz Spaces and Their Real Interpolation
Abstract
Let $p(\cdot):\ \mathbb R^n\to(0,\infty)$ be a variable exponent function satisfying the globally log-Hölder continuous condition, $q\in(0,\infty]$ and $A$ be a general expansive matrix on $\mathbb{R}^n$. In this article, the authors first introduce the anisotropic variable Hardy-Lorentz space $H_A^{p(\cdot),q}(\mathbb R^n)$ associated with $A$, via the radial grand maximal function, and then establish its radial or non-tangential maximal function characterizations. Moreover, the authors also obtain characterizations of $H_A^{p(\cdot),q}(\mathbb R^n)$, respectively, in terms of the atom and the Lusin area function. As an application, the authors prove that the anisotropic variable Hardy-Lorentz space $H_A^{p(\cdot),q}(\mathbb R^n)$ severs as the intermediate space between the anisotropic variable Hardy space $H_A^{p(\cdot)}(\mathbb R^n)$ and the space $L^\infty(\mathbb R^n)$ via the real interpolation. This, together with a special case of the real interpolation theorem of H. Kempka and J. Vybíral on the variable Lorentz space, further implies the coincidence between $H_A^{p(\cdot),q}(\mathbb R^n)$ and the variable Lorentz space $L^{p(\cdot),q}(\mathbb R^n)$ when $\mathop\mathrm{essinf}_{x\in\mathbb{R}^n}p(x)\in (1,\infty)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2017
- DOI:
- 10.48550/arXiv.1705.05188
- arXiv:
- arXiv:1705.05188
- Bibcode:
- 2017arXiv170505188L
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Analysis of PDEs;
- Mathematics - Functional Analysis;
- Primary 42B35;
- Secondary 46E30;
- 42B30;
- 42B25;
- 46B70
- E-Print:
- 42 pages, Submitted