Sums of four prime cubes in short intervals
Abstract
We prove that a suitable asymptotic formula for the average number of representations of integers $n=p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}$, where $p_1,p_2,p_3,p_4$ are prime numbers, holds in intervals shorter than the the ones previously known.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2017
- DOI:
- 10.48550/arXiv.1705.04457
- arXiv:
- arXiv:1705.04457
- Bibcode:
- 2017arXiv170504457L
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- Unconditional result improved by using a Robert-Sargos estimate (lemmas 6-7)