The distant graph of the projective line over a finite ring with unity
Abstract
We discuss the projective line $\mathbb{P}(R)$ over a finite associative ring with unity. $\mathbb{P}(R)$ is naturally endowed with the symmetric and antireflexive relation "distant". We study the graph of this relation on $\mathbb{P}(R)$ and classify up to isomorphism all distant graphs $G(R, \Delta)$ for rings $R$ up to order $p^5$, $p$ prime.
 Publication:

arXiv eprints
 Pub Date:
 January 2017
 DOI:
 10.48550/arXiv.1701.01263
 arXiv:
 arXiv:1701.01263
 Bibcode:
 2017arXiv170101263B
 Keywords:

 Mathematics  Rings and Algebras