Landau Damping of Beam Instabilities by Electron Lenses
Abstract
Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers, and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, magnetically stabilized electron beam, or "electron lens," easily introduce transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important to note that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.
- Publication:
-
Physical Review Letters
- Pub Date:
- September 2017
- DOI:
- arXiv:
- arXiv:1706.08477
- Bibcode:
- 2017PhRvL.119m4802S
- Keywords:
-
- Physics - Accelerator Physics
- E-Print:
- 17 pages, 4 Figures