Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run
Abstract
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω0<1.7 ×10-7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
- Publication:
-
Physical Review Letters
- Pub Date:
- March 2017
- DOI:
- 10.1103/PhysRevLett.118.121101
- arXiv:
- arXiv:1612.02029
- Bibcode:
- 2017PhRvL.118l1101A
- Keywords:
-
- General Relativity and Quantum Cosmology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 13 pages, 6 figures