Weyl current, scale-invariant inflation, and Planck scale generation
Abstract
Scalar fields, ϕi, can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including MP=0 ; (ii) the ϕi have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, K (ϕi)=constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. These models are governed by a global Weyl scale symmetry and its conserved current, Kμ. At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.
- Publication:
-
Physical Review D
- Pub Date:
- February 2017
- DOI:
- arXiv:
- arXiv:1610.09243
- Bibcode:
- 2017PhRvD..95d3507F
- Keywords:
-
- High Energy Physics - Theory;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Phenomenology
- E-Print:
- 17 pages, 3 figures