Topological order, symmetry, and Hall response of two-dimensional spin-singlet superconductors
Abstract
Fully gapped two-dimensional superconductors coupled to dynamical electromagnetism are known to exhibit topological order. In this work, we develop a unified low-energy description for spin-singlet paired states by deriving topological Chern-Simons field theories for s -wave, d +i d , and chiral higher even-wave superconductors. These theories capture the quantum statistics and fusion rules of Bogoliubov quasiparticles and vortices and incorporate global continuous symmetries—specifically, spin rotation and conservation of magnetic flux—present in all singlet superconductors. For all such systems, we compute the Hall response for these symmetries and investigate the physics at the edge. In particular, the weakly coupled phase of a chiral d +i d chiral state has a spin Hall coefficient νs=2 and a vanishing Hall response for the magnetic flux symmetry. We argue that the latter is a generic result for two-dimensional superconductors with gapped photons, thereby demonstrating the absence of a spontaneous magnetic field in the ground state of chiral superconductors. It is also shown that the Chern-Simons theories of chiral spin-singlet superconductors derived here fall into Kitaev's 16-fold classification of topological superconductors.
- Publication:
-
Physical Review B
- Pub Date:
- January 2017
- DOI:
- 10.1103/PhysRevB.95.014508
- arXiv:
- arXiv:1606.03462
- Bibcode:
- 2017PhRvB..95a4508M
- Keywords:
-
- Condensed Matter - Superconductivity;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Strongly Correlated Electrons;
- High Energy Physics - Theory
- E-Print:
- 15 pages, 6 figures, published version