Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers
Abstract
Collinear laser spectroscopy was performed on Zn (Z = 30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N = 33- 49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N = 50. Exactly one long-lived (>10 ms) isomeric state has been established in each 69-79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell-model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ = 1 /2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N = 43, while the progression towards 79Zn points to the stability of the Z = 28 and N = 50 shell gaps, supporting the magicity of 78Ni.
- Publication:
-
Physics Letters B
- Pub Date:
- August 2017
- DOI:
- Bibcode:
- 2017PhLB..771..385W
- Keywords:
-
- Zinc;
- Magnetic dipole moment;
- Quadrupole moment;
- Laser;
- Shell closure